
  Will AI R&D Automation cause a 
Software Intelligence Explosion?

Empirical evidence suggests that, if AI automates AI research, feedback loops 
could overcome diminishing returns, significantly accelerating AI progress    .

Daniel Eth & Tom Davidson
March 2025

Summary����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� 1

Introduction�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������3

Where AI progress comes from �����������������������������������������������������������������������������������������������������������������������������������������������������5

Improvements in AI software are already driving fast AI progress�������������������������������������������������������������������������������������8

AI progress will likely speed up as we approach AI Systems for AI R&D Automation�����������������������������������������������13

What happens when we reach AI Systems for AI R&D Automation?���������������������������������������������������������������������������� 14

A toy model to demonstrate the dynamics of a software intelligence explosion�����������������������������������������������������������17

Being more mathematically concrete: returns to software R&D ������������������������������������������������������������������������������������������������ 22

In the real world, are returns to software R&D greater or less than one?���������������������������������������������������������������������������� 28

You might need fast growing computing power to discover better algorithms�������������������������������������������������������������33

Progress might become bottlenecked by the time required to train new AI systems ������������������������������������������������ 36

Bringing it all together�������������������������������������������������������������������������������������������������������������������������������������������������������������������� 39

What can we do if an software intelligence explosion is possible?����������������������������������������������������������������������������������� 40

References������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������ 43

Appendix: Justification for our formulation of r �������������������������������������������������������������������������������������������������������������������������� 48



1

Summary

AI companies are increasingly using AI systems to accelerate AI research and development. These 
systems assist with tasks like writing code, analyzing research papers, and generating training data. 
While current systems struggle with longer and less well-defined tasks, future systems may be able 
to independently handle the entire AI development cycle – from formulating research questions and 
designing experiments, to implementing, testing, and refining new AI systems.

Some analysts have argued that such systems, which we call AI Systems for AI R&D Automation 
(ASARA), would represent a critical threshold in AI development. The hypothesis is that ASARA 
would trigger a runaway feedback loop: ASARA would quickly develop more advanced AI, 
which would itself develop even more advanced AI, resulting in extremely fast AI progress – an  
“intelligence explosion.”

Skeptics of an intelligence explosion often focus on hardware limitations – would AI systems be 
able to build better computer chips fast enough to drive such rapid progress? However, there’s 
another possibility: AI systems could become dramatically more capable just by finding software 
improvements that significantly boost performance on existing hardware. This could happen through 
improvements in neural network architectures, AI training methods, data, scaffolding around AI 
systems, and so on. We call this scenario a software intelligence explosion (SIE). This type of advancement 
could be especially rapid, since it wouldn’t be limited by physical manufacturing constraints. Such a 
rapid advancement could outpace society’s capacity to prepare and adapt.

In this report, we examine whether ASARA would lead to an SIE. First, we argue that shortly after 
ASARA is developed, it will be possible to run orders of magnitude more automated AI researchers 
than the current number of leading human AI researchers. As a result, the pace of AI progress will be 
much faster than it is today.

Second, we use a simple economic model of technological progress to analyze whether AI progress 
would accelerate even further. Our analysis focuses primarily on two countervailing forces. Pushing 
towards an SIE is the positive feedback loop from increasingly powerful AI systems performing AI 
R&D. On the other hand, improvements to AI software face diminishing returns from lower hanging 
fruit being picked first – a force that pushes against an SIE.

To calibrate our model, we turn to empirical data on (a) the rate of recent AI software progress (by 
drawing on evidence from multiple domains in machine learning and computer science) and (b) the 
growing research efforts needed to sustain this progress (proxied by the number of human researchers 
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in the field). We find that (a) likely outstrips (b) – i.e., AI software is improving at a rate that likely 
outpaces the growth rate of research effort needed to achieve these software improvements. In our 
model, this finding implies that the positive feedback loop of AI improving AI software is powerful 
enough to overcome diminishing returns to research effort, causing AI progress to accelerate further 
and resulting in an SIE.

If such an SIE occurs, the first AI systems capable of fully automating AI development 
could potentially create dramatically more advanced AI systems within months, even with  
fixed computing power.

We examine two major obstacles that could prevent an SIE: (1) the fixed amount of computing power 
limits how many AI experiments can be run in parallel, and (2) training each new generation of AI 
system could take months. While these bottlenecks will slow AI progress, we find that plausible 
workarounds exist which may allow for an SIE nonetheless. For example, algorithmic improvements 
have historically increased the efficiency of AI experiments and training runs, suggesting that training 
runs and experiments could be progressively sped up, enabling AI progress to continually accelerate 
despite these obstacles.

Finally, because such a dramatic acceleration in AI progress would exacerbate risks from AI, we 
discuss potential mitigations. These mitigations include monitoring for early signs of an SIE and 
implementing robust technical safeguards before automating AI R&D.

Key Points

•	 Even if hardware were held constant upon the creation of AI systems capable of fully 
automating AI R&D, software progress alone could plausibly enable faster and faster AI 
advancements, yielding a “software intelligence explosion.”

•	 If a software intelligence explosion were to occur, it could lead to incredibly fast AI 
progress, necessitating the development and implementation of strong policy and technical  
guardrails in advance.
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Introduction

Over the past few years, AI systems have increasingly been used by AI researchers to help conduct 
further AI R&D. Recent evidence suggests cutting-edge AI systems can now exceed human expert 
performance on some AI R&D tasks when given short (2-hour) time windows, though humans 
demonstrate better performance with increasing time. Many researchers expect that in the coming 
years or decades, further advancements will lead to AI systems capable of fully automating all tasks 
involved in AI R&D. Systems of this sort, which we’ll refer to as AI Systems for AI R&D Automation, 
or ASARA, can be thought of as being able to substitute for any remote R&D workers at companies 
advancing the state of the art for AI.

Some researchers argue the emergence of ASARA would trigger a feedback loop in which ASARA 
systems performing AI R&D lead to more capable ASARA systems, which in turn conduct even 
better AI R&D, and so on, culminating in an “intelligence explosion” – a period of very rapid and 
accelerating AI progress which results in significantly superhuman AI.1 Others, however, are skeptical 
that progress in AI would become extremely fast after the creation of ASARA, because they expect 
progress will become bottlenecked on physical processes in hardware R&D or hardware production.

In this report, we examine the possibility of an intelligence explosion occurring with a constant 
amount of computer hardware, with the explosive feedback loop sustained simply through software 
progress.  If this software-only feedback loop similarly led to accelerating AI progress after the 
creation of ASARA, then we would have what we’ll call a software intelligence explosion, or SIE.2 While 
sufficiently advanced AI, if managed well, would offer tremendous benefits to society, an SIE in 
particular would be worrying, for a couple reasons:

1.	 If an SIE is possible, then hardware constraints are irrelevant for AI becoming incredibly 
powerful very quickly. Extremely dangerous AI capabilities may emerge very suddenly, 
before the world is ready to handle them. Technical guardrails and governance mechanisms 
that were initially adequate for the level of technology could quickly become insufficient. 
Note that this analysis does NOT depend on any discontinuous jumps in AI capabilities, but 
instead is based on “business as usual” improvements in AI software feeding back into itself.

1  Ideas of this sort date back to at least mathematician I. J. Good, who in a 1965 paper predicted that after humanity invents 
an “ultraintelligent machine,” there would then “unquestionably be an ‘intelligence explosion,’ and the intelligence of man 
would be left far behind.” As another example, Ray Kurzweil’s popular 2005 book The Singularity is Near argued at length 
that the world would see an intelligence explosion within decades.

2  The idea of an SIE was previously discussed in Tom Davidson’s report “What a Compute-Centric Framework Says 
About Takeoff Speeds.” Note that report uses the term “software-only singularity” for the same concept.

https://metr.org/AI_R_D_Evaluation_Report.pdf
https://www.youtube.com/watch?v=T5cPoNwO7II&t=1236s
https://darioamodei.com/machines-of-loving-grace
https://ia.samaltman.com
https://www.stat.vt.edu/content/dam/stat_vt_edu/graphics-and-pdfs/research-papers/Technical_Reports/TechReport05-3.pdf
https://www.singularity.com
https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
https://www.openphilanthropy.org/research/what-a-compute-centric-framework-says-about-takeoff-speeds/
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2.	 Most policy proposals for AI governance are based on using computer hardware as the 
focus of regulation. For instance, proposals include tracking stocks and flows of hardware 
to monitor potential AI capabilities available to different actors, and requiring safety 
evaluations for AI systems trained above certain computational thresholds. These proposals 
are a valuable start and would offer a useful foundation for further policies. But in an SIE, 
they may need to be extended. Rapid software progress would quickly make computing-
power-centric metrics outdated for the leading AI developers. Tracking AI capabilities in an 
SIE would require ongoing monitoring of companies’ R&D progress and evaluation of their 
most powerful internally deployed systems.

In the rest of this piece, we’ll explain the dynamics that may lead to an SIE, as well as reasons for and 
against thinking an SIE will occur. We’ll end with a few preliminary policy suggestions for how society 
could manage the risks associated with an SIE. But first, a few caveats:

•	 In reality, hardware likely won’t be held constant upon the creation of ASARA. Therefore, 
once we reach ASARA, an intelligence explosion may be even more likely than what’s 
implied by the below discussion.

•	 Prediction is hard, especially about the future. Relatedly, we make many simplifying 
assumptions, such as assuming certain variables will grow continuously when in reality they 
should grow in small-yet-incremental steps. We may or may not turn out to be correct in 
broad strokes, but we will definitely be wrong in all sorts of small and subtle ways.

•	 Prediction gets even harder when there are major changes to the world, and the existence 
of ASARA (and of powerful AI systems on the path to ASARA) may impact the world in 
many unexpected ways, possibly throwing a wrench in any particular prediction.

•	 Except where indicated otherwise, the discussion below looks at what will happen “by 
default” – i.e., if business-as-usual improvements in AI continue, with AI companies 
independently pursuing their perceived local, short-term self-interests, and if social factors 
don’t slow down the pace of AI progress. But it’s possible that powerful stakeholders will 
instead coordinate to avoid undesirable outcomes.3 Indeed, one of our main motivations for 
writing this piece is to alert people about the path we’re potentially headed down, with the 
hope that we can change course if needed.

Let’s now turn our attention to the dynamics that may lead to an SIE.

3  Alternatively, poorly coordinated actions may shift us away from pursuing this course for other reasons.
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Where AI progress comes from

In order to predict how AI progress will change after the creation of ASARA, we first need to 
understand where AI progress originates. As a general rule, AI progress comes from researchers doing 
one of two things:

1.	 Using more computational power (and more data). Simply using more computational 
power with the same algorithms and similar types of data can lead to better AI systems.4 
GPT-3, for instance, is basically just a scaled-up version of GPT-2,5 yet this increased 
computational power enables GPT-3 to not only engage in coherent dialogue, but 
also write functional computer code, translate between languages, and create poetry; 
GPT-2, meanwhile, largely just babbles as if discombobulated.6 Notably, increasing the 
computational power of cutting-edge AI systems doesn’t just lead to improved performance 
on the same tasks, but can also lead to the emergence of new capabilities. ​

Researchers have two methods for increasing the amount of computing power for AI 
systems: AI developers can spend more money for more computational power, and 
hardware researchers can create better forms of hardware that provide more computational 
power for the same cost.

2.	 Developing better AI “software.” This category includes basically everything other than 
raw computer hardware. Most obviously, it includes overarching ideas for new AI paradigms 
or techniques, such as the general principle behind deep learning (train very deep neural 
networks with large amounts of data) or the more specific techniques used for training large 

4  While this paragraph focuses on how more computational power enables better AI systems within the current AI 
paradigm of deep learning, it’s notable that in previous AI paradigms, more computational power also enabled better 
AI systems. For instance, in 1997, the chess-playing AI system Deep Blue bested world chess champion Garry Kasparov, 
using a technique known as “tree search.” In tree search, the AI system plots out potential moves and countermoves, and 
this technique is improved by increased computing power, as more computing power lets the system consider deeper 
sequences of moves, effectively “thinking for longer.”

5  Note that the description of GPT-3 as a scaled-up version of GPT-2 is somewhat of a simplification. First, there are various 
tweaks done to GPT-3 that were not done to GPT-2. Second, while GPT-3 was trained on the same general kind of data as 
GPT-2, it was trained on much more of this data; that is, GPT-3 was scaled up not only in terms of computing power but 
also in terms of training data. And third, the comparison here is between the “base models” of GPT-3 and GPT-2, which 
were both trained simply to imitate text; this is in contrast to any version of GPT found on ChatGPT, which involves a 
system that has been modified from the base model to perform the role of a question-answering chatbot.

6  As another example of increased computing power yielding improved AI abilities, OpenAI’s recent system o1, which 
specializes in reasoning, performs better when enabled to utilize more computational resources to solve problems 
(thereby engaging in reasoning for longer).

https://www.nytimes.com/2020/11/24/science/artificial-intelligence-ai-gpt3.html
https://slatestarcodex.com/2019/02/18/do-neural-nets-dream-of-electric-hobbits/
https://arxiv.org/pdf/2206.07682.pdf
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Deep_Blue_(chess_computer)
https://openai.com/index/learning-to-reason-with-llms/
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language models, also known as LLMs (train an AI system to predict internet text, word by 
word,7 with the goal of learning to imitate human-like speech).

AI “software” also includes many specific details of AI systems, such as: the “architecture” or 
structure of the AI system, the algorithm used to train the system to begin with, techniques 
used to procure high-quality data, efficiency tweaks, hyperparameters, and so on. In the 
context of LLMs, software would further include techniques for prompting and fine-tuning 
the LLM to give desirable output, as well as added “scaffolding” around an LLM which can 
allow the system to solve problems the LLM would be unable to solve on its own (such as by 
chaining together multiple LLMs into an AI agent or enabling an AI to use tools such as a 
web browser).

Putting together the above points, we can illustrate the main factors leading to AI progress as follows:

Figure 1: Simplified diagram showing the main factors leading to AI progress. These factors are increases 
in hardware (due to either more money being spent on hardware or hardware R&D leading to improved 
hardware) and improvements in software (due to software R&D). Today, both hardware R&D and software 
R&D are performed by human researchers.

In an SIE, meanwhile, human researchers would be replaced by ASARA systems as the graph becomes 
a loop. Given the definition of an SIE, hardware would also be held constant; this assumption allows 
us to examine the potential for very rapid AI progress, unencumbered by physical bottlenecks related 
to hardware improvements. 

7  Technically, this description of training LLMs is a simplification, for two reasons. First, while LLMs can be thought of as 
being trained to predict text “word by word,” they are actually typically trained to predict text “token by token,” where a 
“token” could be a word, but also could be a part of a word or another character (such as a comma or an emoji). Second, 
while this description applies to the “base model” of LLMs, it neglects that LLMs are often modified with further training 
to exhibit specific types of behavior.

https://en.wikipedia.org/wiki/Prompt_engineering
https://medium.com/@prabhuss73/fine-tuning-ai-models-a-guide-c515bcd4b580
https://arxiv.org/abs/2310.04406v1
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The resulting scenario would look like this:

Figure 2: Diagram similar to Figure 1, but modified in two ways for an SIE. First, the hardware path is 
nixed, allowing for examining a scenario where only software improves. Second, ASARA systems replace human 
researchers in performing R&D, yielding faster AI progress, which further enhances ASARA systems’ abilities, 
enabling them to conduct even better and/or faster software R&D.

But before we consider what happens after the creation of ASARA, let’s turn our attention to the 
strength of the process whereby human researchers make AI progress through software R&D.

Figure 3: Diagram representing the current path by which software R&D yields AI progress.
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Improvements in AI software are already driving fast  
AI progress

Historically, there’s been a lot of attention on how AI systems have become bigger and have been 
using more computing power. But software improvements are also responsible for much AI progress.

As we saw in the above section, software progress encompasses many different avenues (from new 
architectures, to new and better forms of training data, new or improved “learning algorithms” that 
guide the AI system through training, new scaffolding or other methods of integrating the trained 
AI system within some broader system, etcetera). This software progress can be further broken 
down into “efficiency improvements” (i.e., when new AI systems do approximately the same thing as 
previous AI systems, but require less computing power) and “capability improvements” (i.e., when 
new AI systems do things that previous systems didn’t do at all, or when newer systems do things 
more competently than previous systems).

In reality, the distinction between efficiency improvements and capability improvements is at times 
fuzzy. For instance, improvements in the efficiency of training AI systems can generally be converted 
into capability improvements. With greater training efficiency, you can train a larger AI system, 
and larger systems tend to have new capabilities and better performance. Regardless, the two 
types of improvements are still conceptually distinct, even if in reality they’re often blurred. And 
there are other types of improvements that more clearly fit into one bucket or the other – such as 
improvements in capabilities which don’t derive from improvements in efficiency.

So how fast is AI software progress now? 

That’s a really tough question to answer, because AI software progress is really hard to measure. It’s 
particularly difficult to measure capability improvements; for instance, ChatGPT was created by 
modifying GPT-3.5 to engage in informative dialogue and putting this modified version within an 
intuitive user interface. How are we supposed to measure the amount of progress represented by the 
fact that ChatGPT is more likely to productively converse with the user than the original GPT-3.5, or 
the amount represented by the good user interface?

While capability improvements are particularly difficult to quantify, we can better measure efficiency 
improvements. One way to measure efficiency improvements is to look at the amount of computing 
power needed for an AI system to exhibit a particular level of performance, and consider how much 
more computing power was previously needed for AI systems to reach the same level of performance. 

https://ourworldindata.org/grapher/artificial-intelligence-parameter-count
https://epoch.ai/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
https://openai.com/blog/chatgpt
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By tracking the change over time, we can chart how efficiency has improved over time, at least for the 
capability that’s investigated. And by considering several lines of evidence simultaneously, we can 
hopefully get a decent measure for the speed of AI efficiency progress in general. Being concrete, let’s 
consider:

•	 Image recognition. OpenAI has found that, between 2012 and 2017, state-of-the-art image 
recognition algorithms became much more efficient, requiring 1/18th as much computing 
power to run in order to achieve consistent results. This growth rate corresponds to the 
runtime efficiency doubling every 15 months on average – i.e., a 15-month “efficiency 
doubling time.” Similarly, they found that, between 2012 and 2019, the amount of 
computing power needed to train these state-of-the-art image recognition systems (to the 
same level of performance) fell by 44x, corresponding to a training efficiency doubling time 
of 16 months.

As another data point, the research group Epoch has estimated that, from 2012 – 2022, 
training efficiency of image recognition algorithms had a shorter doubling time of  
only 9 months.

•	 Language translation and game playing. OpenAI has found even faster progress in the 
efficiency of training AI systems for language translation and game playing. For language 
translation, based on two analyses, they calculated an efficiency doubling time of 4 months 
and 6 months, and for game playing, they found an efficiency doubling time of 4 months 
for Go and 25 days for Dota. Note, however, that these analyses were rougher and covered 
shorter periods of time than their image recognition analysis.

A separate analysis on changes in the data efficiency of training AI systems to a specific level 
of performance on Atari games found an efficiency doubling time of between 10 months 
and 18 months, depending on the specified level of performance. Though note that this 
analysis was concerned with a separate type of efficiency than what we’re focused on.8

•	 Large language models. Analysis from Epoch estimates that, from 2012 to 2023, training 
efficiency for language models has doubled approximately every 8 months (though with 
high uncertainty – their 95% confidence interval for the doubling time was 5 months to 14 

8  Specifically, we’re focused on computational efficiency – when AI systems require less computational resources to perform 
a task. This study instead focused on data efficiency – when AI systems require less pieces of data in training. While these 
two types of efficiency would not be expected to be a perfect match, they would be expected to be related, with greater 
data efficiency leading to greater computational efficiency. In the training phase, computational resources must be 
spent on training the system on each piece of training data, so reducing the needed amount of training data (such as by 
increasing the data efficiency) would reduce the amount of computational resources needed for training.

https://openai.com/index/ai-and-efficiency/
https://openai.com/index/ai-and-efficiency/
https://epochai.org
https://arxiv.org/pdf/2212.05153.pdf
https://arxiv.org/ftp/arxiv/papers/2005/2005.04305.pdf#page=10
https://arxiv.org/pdf/2102.04881
https://arxiv.org/pdf/2403.05812
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months). Efficiency improvements in running these LLMs (instead of for training them) 
would be expected to grow at a roughly similar rate.9 

The analyses so far just look at improvements for unmodified “base models” and therefore 
neglect efficiency benefits from improvements in “post-training enhancements” like 
fine-tuning, prompting, and scaffolding. These neglected benefits from post-training 
enhancements can be substantial. A separate analysis finds that individual innovations 
in post-training enhancements for LLMs often give >5x efficiency improvements in 
particular domains (and occasionally give ~100x efficiency improvements). In other words, 
AI models that incorporate a given innovation can often outperform models trained with 5x 
the computational resources but without the innovation.

And a separate informal analysis finds that for LLMs of equivalent performance, the cost 
efficiency of running the LLM (i.e., amount of tokens read or generated per dollar) has 
doubled around every 3.6 months since November 2021. (Though note that cost efficiency 
doesn’t just take into account software improvements, but also decreases in hardware costs 
and in profit margins; with that said, software improvements are probably responsible for 
the great majority of the cost efficiency improvements.)

•	 Algorithms writ large (not just AI). An analysis of algorithms writ large (not just AI) 
provides an outside perspective, which we can use to both check how surprised we should be 
about the above results, and how quickly we might expect AI software to progress if we have 
a future paradigm shift to a very different type of AI.

That analysis found that different classes of algorithms have seen very different rates of 
efficiency improvements over the previous several decades – when considering using these 
algorithms for solving problems with very large datasets10 (as is common in AI), close to 

9  We should first note that many types of efficiency improvements will affect both training efficiency and runtime efficiency 
similarly. On the other hand, efficiency improvements that enable training smaller models (i.e. achieving the same 
performance with fewer parameters) may tend to impact training efficiency more than runtime efficiency. If we assume all 
efficiency improvements are of this type, then we’d expect training efficiency to grow twice as quickly as runtime efficiency. 
This conclusion is implied by a landmark 2022 paper from DeepMind, often informally referred to as the “Chinchilla 
paper.” The Chinchilla paper found that when training an LLM with a fixed computational budget, it’s best to scale 
the size of the model and the amount of data used to train the model equally; therefore, if a model can be made Z times 
smaller, the runtime efficiency will grow by Z, while the training efficiency would grow by Z2 (since training on each data 
point will require 1/Z as many computations, and you will only need to train on 1/Z as many data points as well). 

On the other hand, certain other types of algorithmic improvements, such as distillation or quantization, target runtime 
efficiency, specifically. As there are many types of improvements that hit both runtime efficiency and training efficiency 
similarly, some that hit one stronger than the other, and some that hit the other stronger, overall we may expect the two 
types of efficiency to grow at roughly similar rates.

10  In particular, solving problems where N = 1 billion.

https://arxiv.org/abs/2312.07413
https://a16z.com/llmflation-llm-inference-cost/
https://ide.mit.edu/wp-content/uploads/2021/09/How_Fast_Do_Algorithms_Improve.pdf
https://arxiv.org/pdf/2203.15556
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half of the algorithm classes saw basically no efficiency improvements, around a quarter 
saw average efficiency doubling times of around 1 to 3 years, and around a quarter saw 
average efficiency doubling times of under a year.

Table 1: Summary of results from various studies investigating the efficiency doubling times of AI systems in 
several different domains. Note that most of these studies investigated training efficiency (how much computing 
resources are needed to train an AI system to a specific level of capabilities) instead of runtime efficiency (how 

much computing power is needed to run the resultant system). 

Of the different categories above, we put the most weight on the large language model results, because 
LLMs are more likely to form the basis for ASARA than the other algorithms, and because the LLM 
training efficiency analysis uses significantly more data than the other analyses of AI algorithms. 
Conveniently, the LLM analyses also yield the median growth rate of the five categories – roughly 
speaking, LLMs saw faster efficiency growth than image recognition systems and algorithms writ 
large, but slower growth than language translation and game playing.

Looking at the LLM analyses, we may consider that the training efficiency estimate is likely 
conservative at an ~8 month doubling time, as it does not account for post-training enhancements. 
The runtime efficiency estimate of ~4 months, meanwhile, is likely aggressive, as it includes cost 
savings outside of software (such as from hardware and market forces); though even this latter 
estimate ignores some post-training enhancements. We believe it’s reasonable to split the difference 
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between these two estimates and conclude that both training efficiency and runtime efficiency have a 
~6 month doubling time.11

We should also note that, besides efficiency improvements, capability improvements have been 
substantial, and may be an even larger factor than efficiency improvements. Consider:

•	 Recently, new capabilities in AI systems have done much more to increase the usefulness 
of these systems than increased efficiency in already-existing capabilities. For instance, as 
AI has become more economically important over the past decade, most of this economic 
importance has primarily come from new AI capabilities, as opposed to old AI capabilities 
requiring less computational power.12

•	 Anecdotally, LLMs seem to further back up this idea. The biggest software advances in 
the use of LLMs tend to look more like capabilities advances than efficiency advances. For 
instance, Reinforcement Learning from Human Feedback (RLHF) allows for “fine-tuning” 
LLMs to fill certain roles (such as a helpful assistant) instead of simply imitating internet 
text. Additionally, prompt engineering techniques such as prompting an LLM to “think 
step by step” can be used to enhance the reasoning abilities of LLMs, or to otherwise elicit 
latent abilities. In addition to the efficiency benefits of these techniques, mentioned in the 
above section, they also greatly increase the usefulness of various AI systems.

•	 Additionally, efficiency improvements in training LLMs can be converted into capability 
improvements, by effectively scaling systems up so that new capabilities emerge. Consider 
two possible ways for AI companies to incorporate training efficiency improvements into 
LLMs: A) create LLMs that can perform equally well as previous systems, while being 
faster and operating at lower computational costs; and B) create systems that are the 
same (or larger) computational cost, with improved capabilities. AI companies do both 
of these things (e.g., the shift from GPT-3.5 to GPT-3.5 Turbo was mostly an example of 
(A), while the shift from GPT-3.5 to GPT-4 was an example of (B)). Notably, developers 
are generally much more excited by examples of (B) than examples of (A), and they tend 
to choose to incorporate the most powerful model available to them into their processes. 
If efficiency gains were instead the main story going on, we’d expect (A) to instead  
drive more enthusiasm.

11  This conclusion would also be consistent with the logic in footnote 9, which argued that runtime efficiency and training 
efficiency would tend to grow at roughly similar rates.

12  This comparison is somewhat unfair, however, because improved capabilities aren’t due just to software improvements, 
but also to more hardware being available to train larger models. With that said, software improvements are still 
responsible for a substantial portion of improved capabilities.

https://openai.com/blog/chatgpt#Methods
https://arxiv.org/pdf/2205.11916.pdf
https://arxiv.org/pdf/2205.11916.pdf
https://epoch.ai/blog/algorithmic-progress-in-language-models
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So to summarize:

•	 The efficiency of AI software (both runtime efficiency and training efficiency) is doubling 
every ~6 months, with substantial uncertainty.13

•	 This estimate ignores some post-training enhancements, which bring significant  
further gains.

•	 Software progress also enables qualitatively new capabilities, which are much more 
important than pure efficiency gains.14 

AI progress will likely speed up as we approach ASARA

In all likelihood, before we create AI systems that can automate all AI R&D tasks (i.e., ASARA), 
we’ll create AI systems that can automate most AI R&D tasks.15 Such systems will presumably help 
researchers with both software R&D and hardware R&D, though in this piece we’re focusing just on 
the software side.

Already, AI has started to help AI researchers with AI software R&D. For example:

•	 LLMs are commonly used by AI researchers to summarize and analyze research papers, 
enabling them to work faster.

13  For reference, this rate is faster than the oft-quoted rate for hardware progress associated with Moore’s law, in which the 
number of transistors per chip and the amount of computation available per dollar each tend to double around every two 
years.  Interestingly, this rate is similar to the rate at which large AI systems have been scaled up since ~2010, where the 
computational resources used to train notable AI systems has tended to double every 6 months or so.

14  You might think that we could estimate the total speed of software improvements by adding together the rate of 
efficiency improvements and capabilities improvements, which would imply that the overall rate was going substantially 
more than twice as fast as the rate of efficiency improvements alone (if we assume capability gains are responsible for 
more progress than efficiency gains). Unfortunately, we can’t do this, as not all improvements stack in this manner 
(though some do). For instance, improvements in training efficiency can either be put towards improvements in runtime 
efficiency (with a faster model) or towards capabilities improvements (with a more powerful model). But we can’t count 
the entire training efficiency improvement on both sides at the same time. Therefore, all we can say is that software 
improvements must be advancing at least as fast as efficiency improvements alone, and likely substantially faster.

15  The alternative would presumably imply even faster AI progress upon ASARA, as it would imply a large discontinuity in 
capabilities from pre-ASARA systems to ASARA.

https://en.wikipedia.org/wiki/Moore%27s_law
https://aiimpacts.org/trends-in-the-cost-of-computing/
https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
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•	 GPT-4 can help researchers design new “architectures” for AI systems. With that said, as far 
as we’re aware, this technique has not yet been used to help advance the current frontier of 
AI systems.

•	 Programs such as GitHub Copilot act as autocomplete for computer code, allowing AI 
software researchers to work more quickly. Anecdotally, we’ve heard from several AI 
researchers that Copilot has increased their productivity while programming by around a 
factor of 2.

•	 LLMs can be used to generate high-quality training data to train themselves further on, 
leading to improvements in their capabilities. LLMs can additionally engage in prompt 
engineering, designing prompts for other LLMs that, at least under some conditions, yield 
better results than human-designed prompts.

•	 According to the AI evaluation nonprofit METR, OpenAI’s recent system o1-preview 
is able to make headway on crafting scaffolding for other LLMs and on fine-tuning other 
LLMs, both tasks within METR’s AI R&D evaluation task suite, meant to capture 
challenging aspects of frontier AI R&D (though their evaluation did not find that o1-
preview could make meaningful headway on any of the other five tasks in the suite).

•	 Etcetera.

How should we expect AI software progress to change as more and more software R&D tasks are 
automated, often by systems that substantially outperform humans within their domain? Intuitively, 
this dynamic would speed up software progress considerably. Even if overall progress becomes 
bottlenecked by tasks that only humans are able to perform, human researchers would still be able 
to spend much more time focusing on these particular bottlenecked tasks, as AI systems would be 
performing all the other tasks.

What happens when we reach ASARA?

By the time we reach ASARA, it will be possible to automate all tasks within AI software R&D. 
Notably, the amount of computing power it takes to train a new AI system tends to be much larger 
than the amount of computing power it takes to run a copy of that AI system once it’s already trained. 
This means that if the computing power used to train ASARA systems is then repurposed to run 
these systems, a gigantic number of these systems could be run in parallel, likely implying much larger 
“cognitive output” from ASARA systems collectively than what’s currently available from human AI 
researchers.

https://arxiv.org/pdf/2304.10970.pdf
https://github.com/features/copilot
https://arxiv.org/pdf/2210.11610.pdf
https://arxiv.org/pdf/2309.03409
https://metr.org
https://metr.github.io/autonomy-evals-guide/openai-o1-preview-report/
https://ai-improving-ai.safe.ai
https://epoch.ai/blog/interviewing-ai-researchers-on-automation-of-ai-rnd
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Putting some numbers on this – if you have enough computing power to train a frontier AI system 
today, then you have enough computing power to subsequently run probably hundreds of thousands 
of copies of this system (with each copy producing about ten words per second, if we’re talking 
about LLMs). But this number is only increasing as AI systems are becoming larger.16 Within a few 
years, it’ll likely be the case that if you can train a frontier AI system, you’ll be able to then run many 
millions of copies of the system at once (assuming that efficiency gains are used to run more copies 
of the system instead of to run each copy faster). What that means is, by the time we reach ASARA, 
the total cognitive output of ASARA systems will likely be equivalent to millions of top-notch human 
researchers, at least if we assume that each of these copies can match the performance of a top human 
researcher (we address the possibility that this assumption will not hold in a paragraph below). A large 
portion of this cognitive output could then be aimed at performing AI software R&D.

Today, there are perhaps hundreds of thousands of researchers in the world doing AI software R&D 
of some form or another,17 but the vast majority of these researchers are neither working on improving 
state-of-the-art AI capabilities nor are they close to the limits of human potential in terms of abilities. 
When we think about AI software R&D after the advent of ASARA, however, we should imagine a 
pool of virtual researchers equivalent to millions of top-notch human researchers, with a large portion 
plausibly focusing on advancing state-of-the-art capabilities.18

As already hinted at, however, the above comparison relies on assumptions that may wind up not 
holding. In particular, ASARA might initially only be able to fully automate AI R&D work by having 
AI systems “thinking” for thousands of seconds just to produce as much useful work as 1 second of 

16  The reason this ratio is increasing as systems become larger has to do with Chinchilla scaling laws (as discussed in 
footnote 9). According to these scaling laws, if the computational budget for training an LLM increases by a factor of Z 
(or if training efficiency increases as much), then the size of the model should increase by a factor of √Z (with the number 
of datapoints used in training also increasing by a factor of √Z). Because the computational resources required to run 
the LLM (once it’s trained) will be proportional to model size, the computational cost to run the model will likewise 
increase by a factor of √Z. Since the computational cost to train the model is increasing at a faster rate (~Z) than the 
computational cost to run the model (~√Z), this means, as time goes on and models are scaled up, you can run more 
copies of a cutting-edge model with whatever computing resources were needed to train it to begin with.

17  Here’s one way to estimate the number of AI researchers in the world. In 2023, total attendance across 14 major AI 
conferences was 63,000, with the highest attended AI conference (NeurIPS) having 16,000 attendees. Because some 
researchers attend multiple conferences, the total number of individuals who attended at least one of these conferences 
must be between 16,000 and 63,000 (though realistically, probably closer to the 63,000 end). Most AI researchers 
would not attend any of these 14 conferences in a given year, though a sizable minority would, indicating the global AI 
researcher population is probably within the hundreds of thousands.

18  While it’s possible that the proportion of AI research focused on advancing state-of-the-art capabilities will be no higher 
after ASARA than it is now, there are several reasons to suspect it will: 1) State-of-the-art research may be harder than 
many other forms of AI research, and most human researchers might not be talented enough to contribute meaningfully 
to it. 2) Human researchers often specialize and would have a hard time retraining for state-of-the-art research if they 
didn’t initially focus on the relevant areas (vs computer hardware can be repurposed to run different AI systems). 3) 
Once ASARA exists, it’ll presumably be abundantly clear that improving ASARA systems is very valuable (more so than 
the extent to which advancing towards ASARA is seen as valuable today).

https://www.planned-obsolescence.org/continuous-doesnt-mean-slow/
https://arxiv.org/pdf/2203.15556
https://ourworldindata.org/grapher/attendance-major-artificial-intelligence-conferences
https://ourworldindata.org/grapher/attendance-major-artificial-intelligence-conferences
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thought from a human expert (in which case even 10 million AI systems would initially only be able 
to do as much cognitive work as a few thousand human experts). Indeed, the performance of recent 
“reasoning models” can be significantly improved by drastically ramping up how much computing 
power is used to run each copy, allowing each to think for longer. This suggests that the first AI 
systems to match human experts across the board may do so using very large amounts of computing 
power for each task. Even so, efficiency improvements imply that after ASARA is developed, these 
computational costs will fall. And soon after ASARA is developed, AI will likely contribute orders of 
magnitude more cognitive labor to AI R&D than humans do.19

So how fast would we then expect AI progress to be? We can only speculate. But if the current rate of 
software progress implies AI efficiency has a doubling time of ~6 months (or less, if we include post-
training enhancements), then the extra researcher capacity might significantly increase the rate of 
progress – as a ballpark figure, perhaps to a doubling time of a month or two.

After that point, you might think this very fast progress would quickly hit diminishing returns, 
especially considering that (by assumption) hardware would then be held constant. This sort of 
“fizzling out” is certainly one possibility. But it’s not the only possibility. 

To see why, let’s return to our diagram of the factors relevant for AI progress after the creation  
of ASARA:

19  We’ve already seen how AI runtime efficiency is improving fast – we estimated earlier that it’s doubling around every 6 
months (implying a ~4x improvement per year). Further, we’ve discussed how AI software progress will likely speed up 
considerably from that rate as we approach ASARA. Even in a “pessimistic” scenario where the first ASARA systems are 
just barely able to fully automate AI R&D without providing much more cognitive output, that scenario won’t last long. 
The fast pace of progress in AI efficiency would imply orders of magnitude more cognitive output from future ASARA 
systems within a short amount of time – either months or a small number of years, depending on how much the speed of 
AI progress had increased by then.

And there are also multiple ways the above line of thinking is conservative. Even the earliest ASARA systems will have a 
host of significant advantages over human researchers. ASARA systems could make copies of themselves after developing 
a research plan (thus improving coordination while following the plan), revert to backup copies of themselves that were 
saved at specific times, do focused work 24 hours a day, think more quickly than humans, run more copies thinking 
more quickly on the most important tasks, etc. ASARA systems would have a different set of relative advantages and 
disadvantages compared to human researchers, and we should not expect the first ASARA systems to just barely match 
human experts across all tasks. Instead, by the time AI systems can match human experts on the AI R&D tasks that are 
hardest to automate, AI systems should substantially outperform human experts on many other AI R&D tasks, implying 
greater overall cognitive output for ASARA, even initially.

Further, human researchers could also spend their efforts on the tasks that ASARA systems are worst at, where these 
systems do initially just barely match human performance and require large computational costs. In effect, many more 
researchers would focus on these specific tasks than occurs today, further increasing the total amount of cognitive effort 
put towards AI R&D. It’s even possible that this effect will lead to the cognitive effort going toward AI R&D to increase 
by orders of magnitude even before developing ASARA (e.g., once AI systems are able to automate 95% of tasks, human 
researchers will be squeezed onto the final 5% of tasks, implying these human-performed tasks will get 20x more effort 
compared to today).
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Figure 4: Diagram of AI progress after the creation of ASARA and if hardware is then held constant 
(repeated from Figure 2).

With humans completely cut out of the cycle, the feedback loop might go explosive, with progress 
getting faster and faster – i.e., an SIE. But whether or not we’d get that outcome would depend on the 
power of the feedback loop compared to countervailing forces.

A toy model to demonstrate the dynamics of a software 
intelligence explosion

Let’s consider a toy model, representing the above feedback loop in the aftermath of achieving 
ASARA, with total computational power held constant. This toy model will demonstrate two 
competing dynamics:

•	 Diminishing returns to software R&D, as software improvements get harder and harder to 
find.

•	 The positive feedback from increasingly powerful ASARA systems.
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The toy model will also involve several simplifying assumptions.

One, we’ll assume that ASARA systems can all be broken up into distinct artificial general 
intelligences, or “AGIs,” each of which is able to perform all the tasks involved in software R&D. 
Two, we’re assuming all AI progress involves writing “papers” in AI, with each paper representing 
an incremental amount of progress, such that progress can be measured simply by the number of 
cumulative papers written. Three, all AGIs are equally productive as each other, and this productivity 
can be described simply as the number of papers written per unit time. And four, AGIs cannot be 
made more (or less) productive over time, but they can be made more “computationally efficient” 
– requiring less computing power to run each AGI. (Astute readers may realize that this toy model 
ignores capability improvements and only considers efficiency improvements.)

Figure 5: Illustration of the toy model. In the toy model, we’re assuming that AGIs (represented in this figure 
by neural nets in graduation caps) perform software R&D, resulting in “papers,” and these papers allow for 
increasing the efficiency of our AGIs, enabling the fixed amount of hardware to house more AGIs, resulting in 
more total papers per unit time, and so on.

https://en.wikipedia.org/wiki/Artificial_general_intelligence
https://en.wikipedia.org/wiki/Artificial_general_intelligence


19

Okay, first we’ll consider what a “fizzle” looks like in the toy model (see Figure 6 below to follow along 
with this example). Let’s say initially, there’s 1 AGI (for simplicity). We’ll also assume that the AGI’s 
productivity is 1 paper per month, and that computational efficiency can be doubled after 2 papers 
have been written. Then after 2 months have passed, efficiency has doubled, so the same amount of 
hardware can be repurposed to house 2 AGIs. Both AGIs will be able to write 1 paper per month, 
meaning the total productivity is now 2 papers per month. But, because of diminishing returns to 
software R&D, the amount of papers needed to double efficiency again will increase – let’s say it’s now 
3x higher, at 6 papers. With 2 AGIs each writing 1 paper per month, it will take 3 months to write the 
6 papers needed to double efficiency for the second time. At that point, the hardware will allow for 4 
AGIs (efficiency has doubled twice, and 2*2 = 4).

The number of papers needed to double efficiency for a third time will be higher still – let’s imagine 
it’s tripled again, to 18 papers. With 4 AGIs, this next doubling will take 4.5 months (because 18 
papers / (4 papers / month) = 4.5 months).

Figure 6: Illustration of an example “fizzle” within the toy model. In this example, each AI efficiency doubling 
requires three times as many papers to be written as the last. With twice as much researcher capacity, each 
efficiency doubling therefore takes 50% longer than the last.

Progress in this case is “fizzling,” in the sense that it’s taking longer and longer for each subsequent 
doubling – first 2 months, then 3, and then 4.5.
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Now let’s consider an SIE (see Figure 7 below to follow along). Again, we’ll assume there’s initially 
1 AGI that can produce 1 paper per month, and that the first efficiency doubling requires 2 papers 
to be produced. This time, the second efficiency doubling will still require more papers than the first 
efficiency doubling – there are still diminishing returns to software R&D – but it won’t require that 
much more. Let’s imagine the second doubling in this case requires 3 papers – 50% more than the first 
doubling. With 2 AGIs, this number of papers can be produced within just 1.5 months (i.e., 3 papers / 
(2 papers / month)). And so on. Doublings are getting faster and faster.

Figure 7: Illustration of an example SIE within the toy model. Here, each AI efficiency doubling requires 1.5 
times as many papers to be written as the last. With twice as much researcher capacity, each efficiency doubling 
therefore takes 75% as long as the last.

In this case, progress is speeding up. If we simply extrapolate the dynamic within the confines of the 
toy model, it would imply infinite progress within finite time.
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Figure 8: Comparison of our fizzle scenario and our SIE scenario. While progress gradually slows down in the 
fizzle, in an SIE it speeds up without limit. Given the parameters of our toy model, the SIE has an asymptote 
at 8 months after AI R&D is fully automated.

In each of these two cases, we see both a) it gets “harder” over time to increase efficiency, requiring 
more papers for each subsequent doubling, and b) the number of AGIs increases over time, increasing 
the total effort going towards improving efficiency. The differentiator between the fizzle and the SIE 
is the relative strength of these two effects. Specifically, in a fizzle, each doubling of efficiency requires 
more than twice as many papers as the last (e.g., from 2 –> 6 –> 18), implying progress is getting harder 
at a faster rate than the AGI labor force is improving. Meanwhile, for an SIE, each efficiency doubling 
requires less than twice as many papers as the last (e.g., from 2 –> 3), implying progress is getting harder 
at a slower rate than improvements in the AGI labor force. If each efficiency doubling required papers 
to exactly double, then we’d see sustained exponential growth in efficiency, as each efficiency doubling 
would continue to take 2 months (e.g., with 2 AGIs needing to produce 4 papers, 4 AGIs needing to 
produce 8, …).
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Table 2: Chart demonstrating the differentiator between a fizzle and an SIE in our toy model. Note the 
specific number of papers listed for each doubling in each scenario is simply illustrative; the important point is 
that the tipping point between a fizzle and an SIE is when the papers required for a subsequent doubling in 
efficiency is twice as large as the papers required for the current doubling. Colored font used to help readers 
follow along.

Being more mathematically concrete: returns to software 
R&D

We can capture the above considerations using a single variable, returns to software R&D (r). The 
variable r quantifies, as software improves, how much harder it becomes to improve AI software 
further, with lower values of r indicating it becomes much harder. Since we’re now outside the toy 
model, we’re not just focused on efficiency improvements but on capability improvements as well. 
(We’ll say that a capability improvement “doubles” software if it increases AI’s cognitive output by the 
same amount as if we had doubled efficiency.20)

The value of r is set such that r = 1 corresponds to exponential growth, with each doubling in software 
capacity needing 2x as much research effort as the last. When r < 1, we get a fizzle, with each software 

20  This is just a choice about how to define the units for “software.” According to our definition, if you can run twice as 
many instances of all your AIs, and their capabilities are fixed, software has increased by 2x. With ASARA systems, that 
change would improve your ability to make research progress by some amount. If some capability improvement yielded 
the same improvement, then we would say that it too increased software by 2x. In other words, once we have ASARA, 
we measure the magnitude of software improvements via their practical effect on the ability to make further AI research 
progress. (Before we reach ASARA, the definition of a unit of software is, admittedly, murkier.)
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doubling needing >2x as much research effort as the last. And r > 1 corresponds to an SIE, with each 
software doubling needing <2x as much research effort as the last.

More specifically, r gives the number of times software doubles for each time the cumulative work 
on software R&D doubles.21 See Appendix for theoretical and empirical justification of using this 
formulation between these factors, based on lines of evidence from several fields of technology, and 
see Table 3 for clarification on how r is calculated in the context of the toy model.

Table 3: Continuation from Table 2, updated to demonstrate the derivation of r. Again, this table uses 
numbers that are illustrative of each scenario in our toy model, and colored font is used to help readers follow 
along. The tipping-point condition between an SIE and a fizzle is r = 1. Note the first column in this table is 
copied over from the last column in Table 2.

21  Note that, while in the toy model, we were focused on the amount of work performed (i.e., papers written) between 
efficiency doublings, outside of the toy model we are focused on the cumulative amount of work performed, which 
incorporates all prior work performed in the field (the equivalent in the toy model would be to add up all the papers 
ever written until the time in question). Focusing on the work performed between efficiency doublings is simpler, while 
focusing on the cumulative amount of work performed is more useful when we’re concerned with how parameters vary 
continuously instead of how they vary between discrete steps of software capacity doublings. Both formulations lead to 
similar results.
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Being a bit more concrete about what this could all mean post-ASARA, let’s imagine the software 
doubling time is down to 1 month when ASARA is first developed.22 If r = 0.7, each subsequent 
doubling in AI software capacity will take 35% longer than the last one,23 meaning the second 
doubling would happen in 41 days, then the third in 55 days, then 74 days, then 100 days; this would 
correspond to a ~30x improvement in AI software capacity in a bit under a year (with subsequent 
years seeing substantially slower progress). As a point of comparison, this yearly growth rate is 
perhaps somewhat similar to the rate of improvement in the capacity of cutting-edge AI systems 
today,24 even though improvements in cutting-edge AI systems today include not only software 
advances, but also hardware advancements and increases in spending on hardware. Notably, these 
advances would be happening at a time when AI systems would already be extremely capable, making 
the situation more concerning than the same rate of progress occurring with today’s systems. Of 
course, this comparison is incredibly rough (and the relevant metric is still fuzzy); the comparison 
isn’t meant to be interpreted as a precise claim but instead as simply a plausible ballpark claim.

22  In a previous section, we speculated that the increased researcher capacity from ASARA systems might decrease the 
AI efficiency doubling time from ~6 months to ~1-2 months. Now that we’re dealing with r, however, it’s not enough to 
focus just on software efficiency – we need to instead focus on cognitive output from AI systems more generally, which 
includes both efficiency advancements and capability advancements (as described in footnote 20). Considering both 
of these factors together would imply substantially faster AI progress than focusing on efficiency improvements alone. 
Speculating further, we’ll imagine this consideration reduces the doubling time down to a single month. Note that none 
of the conclusions in this piece depend on this exact figure, and the value of one month is picked largely for illustrative 
purposes.

23  We can see this result from the following math. If r = 0.7, then that means that if the cumulative amount of work 
performed on software R&D doubles, there will be 0.7 doublings in AI software capacity. We can alternatively formulate 
this relationship as 1 doubling in AI software capacity requiring (1/0.7) = 1.43 doublings in cumulative software 
R&D. Since doubling a variable x times amounts to increasing the level of the variable by a factor of 2^x, this increase 
in cumulative software R&D would amount to an increase by a factor of 2^1.43 = 2.69 – i.e., an increase of (2.69 - 1) 
= 1.69 of its original value. That is, the n + 1st doubling in software capacity will require 1.69 as much software R&D 
as had ever occurred before, and the nth doubling in software capacity will require (1.69/2.69) = 0.63 of the software 
R&D that ever occurs through the end of the nth doubling. The n + 1st doubling will therefore require (1.69/0.63) = 
2.69 as much software R&D as the nth doubling. But the software capacity over the n + 1st doubling will be twice that 
of the nth doubling. The time to complete the n + 1st doubling will therefore be (2.69/2) = 1.35 that of the nth doubling, 
corresponding to 35% longer.

24  We saw above that AI software efficiency is likely doubling around twice a year, and we might update our rough 
estimate for AI software progress to doubling four times a year (i.e., increasing by 16x per year) to account for capability 
improvements. In addition to software, we’re also currently seeing increases in hardware used for the most powerful 
AI systems (due to both hardware improvements and more money being spent on hardware) – since 2010, we’ve seen 
the computational resources used to train these systems increase by ~4x per year. If we simply multiply these numbers 
through, then we’d get an increase of ~64x per year. Given how rough and uncertain this whole calculation is, it seems 
appropriate to consider this in the same ballpark as the ~30x improvement estimated in the first year of a hypothetical 
fizzle.

https://epochai.org/blog/trends-in-machine-learning-hardware
https://epochai.org/blog/how-much-does-it-cost-to-train-frontier-ai-models
https://epochai.org/blog/training-compute-of-frontier-ai-models-grows-by-4-5x-per-year
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Meanwhile, if r = 3, then each doubling will take 63% as long as the last one,25 implying the next several 
doublings will take: 19 days, 12 days, 7.6 days, 4.8 days, and so on (until r itself decreases, potentially 
due to physical limits being approached26).

25  With r = 3, a doubling in AI software capacity will require (1/3) = 0.33 doublings in cumulative software R&D, 
corresponding to an increase by a factor of 2^0.33 = 1.26 (or by an amount of (1.26 - 1) = 0.26 of its original value). The 
n + 1st doubling will therefore require 0.26 as much software R&D as has ever occurred before, and the nth doubling 
will require (0.26/1.26) = 0.21 as much software R&D as has ever occurred through the end of the nth doubling. The n 
+ 1st doubling in software capacity will therefore require (0.26/0.21) = 1.26 as much software R&D as the nth doubling 
in capacity. Again, the software capacity will be twice as high in the n + 1st doubling as in the nth doubling, implying the 
time to complete the n + 1st doubling will be (1.26/2) = 0.63 that of the nth doubling, or 63% as long.

26  Physical limits come into play for a couple reasons. First, the hardware stock introduces limits in how fast improvements 
can be made to software. For instance, signals can only travel so fast within the hardware, and software improvements 
cannot occur faster than these improvements can be implemented in the hardware. Second, given a fixed stock of physical 
hardware, there is a (incredibly large, yet still technically) finite number of distinct algorithms that could be run on the 
hardware. The finite number of possible algorithms sets a fundamental limit on how intelligent an AI system on the 
hardware could be. As these physical limits are approached, the rate of software improvement (and also r) must decrease. 
It’s also possible other limits exist well below these limits, or that r will decrease well before these limits are approached 
for other reasons.
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Figure 9: Graph showing AI software progress over the first year after ASARA, as a function of r, assuming 
the first doubling in software progress takes 1 month and hardware is held constant upon the creation of 
ASARA. Note that for r > 1 (red and purple lines above), representing an SIE, progress becomes faster and 
faster, without limit (in reality, physical limits would eventually reduce r and slow progress, but it’s unclear 
whether those physical limits would start biting before tremendous progress was achieved – see Figure 10 for 
more). For r < 1 (green and blue lines above), representing a fizzle, progress slows down over time, but could 
still be quite fast for a period of time (for reference, the dashed line on the graph corresponds to a very rough 
guess of the current rate of progress in AI capacity, including gains derived from hardware growth). Note that 
this graph makes simplifying assumptions, such as ignoring the “stepping on toes” effect.27 

27  The “stepping on toes” effect is an economics effect that captures inefficiencies introduced due to parallelization of work. 
By ignoring the effect, the graph assumes that 10 people working for 1 month can achieve the same amount of progress 
as 1 person working for 10 months (or, in the case of ASARA systems, 10x as much computing power being used on 
ASARA systems for 1 month can yield similar progress as 1x as much computing power being used for 10 months). This 
is unrealistic. A more realistic model that incorporated this effect would find that the value of r makes somewhat less 
difference to the growth trajectory, with both high and low values of r having trajectories closer to when r = 1. (The r = 1 
trajectory would be unchanged, and still exponential, after incorporating “stepping on toes.”) On the graph, this would 
mean all the lines would be somewhat closer to the orange line. With that said, we expect the “stepping on toes” effect 
to be smaller for ASARA systems than it is today, since coordination across ASARA systems working in parallel is likely 
to be easier than it is for people (e.g., because such systems could simply be duplicated and run in parallel, or could share 
databases in a way that humans cannot simply share memories).
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A couple points from the above discussion are worth noting. First, the brief mention of sustained 
exponential growth may seem implausible to the point of silliness, as r would have to be exactly 
1, and prima facie that seems very unlikely. But it’s possible that a human response could keep us on 
this knife’s edge. Perhaps human reactions will oscillate between wanting to slow everything down if 
progress starts accelerating and everything seems “too fast” (leading people to implement barriers to 
fast progress) and wanting to speed everything up when progress seems “too slow” (leading people 
to remove these barriers). This situation would mirror the collective response to COVID, in which, 
at times when COVID rates were high, lockdowns and other countermeasures were enacted, and at 
times when rates had fallen, these measures were largely abandoned.28

Alternatively, humans might intentionally craft policy to target constant exponential growth of 
AI capabilities, with the hope of having a more gradual increase in the capacity of AI systems. At 
the end of this piece, we list some preliminary policy suggestions for achieving this outcome, if it  
is in fact desirable.

Another thing to note is that even if we get a fizzle, we could still experience fast progress for some 
time. As the above discussion shows, if we had an initial doubling time of 1 month with an r of 0.7, 
within a year that would yield a relative increase in AI capacity that’s perhaps similar to the yearly 
relative increase in the most powerful AI systems today, at a time when AI systems would be 
incredibly powerful.29

In an SIE, meanwhile, things would get much wilder than that. It’s uncertain how far an SIE would 
continue before progress started slowing down; it’s plausible that it could continue over a very large 
range before progress began slowing down.

28  This behavior kept the reproductive number (incidentally, also known as r within epidemiology) for COVID around 1 for 
long periods of time in many countries, despite forecasters initially expecting r would instead either be above 1 (relatively 
quickly leading to most people becoming infected with COVID and hospitals being over capacity) or below 1 (relatively 
quickly leading to COVID zero).

29  It’s also possible that the rate of progress in that first year of a fizzle would be somewhat faster than the current rate, but 
it is very unlikely that a fizzle would see AI capacity increase at a rate (averaged over a year) that was extraordinarily faster 
than today. For example, if the initial doubling time was as short as three days, and if r was at 0.9, we would then see only 30 
doublings in AI capacity over the first year, compared to around 6 doublings in AI capacity per year now; i.e., AI capacity 
would increase in that first year by about 5 years’ worth of progress at today’s rate. This rate would certainly be fast, but it 
wouldn’t be the dizzyingly fast rate that we’d expect from an SIE. And of course, assuming hardware continued to be held 
constant, progress would further slow down from there – the next year would see around 1.5 years’ worth of progress at 
today’s rate, and the year after that would see around 1 year’s worth of progress.
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Figure 10: Even if there is an SIE, physical limits (as described in footnote 26) would eventually slow 
progress, if progress doesn’t slow for other reasons first. There is tremendous uncertainty about how high these 
limits are above the first ASARA systems, though, and we may see extraordinary progress before these limits are 
approached.

As we’ve discussed, whether an SIE would happen at all depends on whether r is above 1.

In the real world, are returns to software R&D greater or 
less than one?

Luckily, the formulation of r above allows us to examine this variable before reaching ASARA. Once 
ASARA is achieved, we’ll simply be in the special case where the “work performed on software R&D” 
is being done by AI systems themselves, but today, r would correspond to how many times AI software 
doubles for each doubling in the cumulative amount of human-performed AI software R&D efforts. We 
can therefore estimate a value of r if we can measure how AI software R&D is growing currently and 
relate this growth to the growth in AI software capacity.

There are a few reasons to think that r is currently above 1:

•	 Image recognition data. We saw above that, from 2012 – 2022, image recognition 
algorithms have become increasingly efficient, with efficiency doubling times of around 9 
months (according to the research group Epoch). This value is a measure of the growth of 
AI software efficiency; to derive a value for r, we also need a measure of the growth in AI 
software R&D efforts. We could then estimate r by estimating how much more R&D was 
needed for each subsequent software doubling, on average.30 For various technical reasons, 

30  That is, we could estimate r by simply dividing the overall value for software R&D doubling time by efficiency doubling 
time.
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however, this estimate would be rough and susceptible to noise; more sophisticated 
analysis could better capture uncertainty and/or incorporate more data to better model the 
underlying dynamics.

Epoch has performed this exact analysis, where they assume software R&D can be proxied 
by the number of researchers in the field.31 According to their analysis, the median 
likelihood value for r in computer vision is 1.4, though with large uncertainty – the 5th 
to 95th percentiles for r spanned 0.8 to 2.4, and uncertainty would be wider still if we also 
consider that their choice of variable for software R&D work may not have matched the 
true research input in the field (e.g., perhaps the average researcher quality changed over 
this time, or perhaps some other measure of the number of researchers in the field would 
be more apt). Still, the bottom line is that each time image-recognition training efficiency 
doubled, the work needed to double it again likely less than doubled. And preliminary 
internal analysis from Epoch suggests that the value of r is as high or higher for LLMs.

That said, we should interpret these results with a bit of caution. Epoch’s analysis on image 
recognition algorithms focussed on the efficiency of training these image recognition 
systems, not the efficiency of running the systems, like in our toy model, and therefore 
r > 1 cannot straightforwardly be interpreted as a condition for an SIE. Still, these results 
hint that software returns in runtime efficiency alone may enable an SIE; the prospect 
of converting training efficiency improvements into larger AI systems with capability 
improvements only increases the chances of an SIE.32

31  To estimate the number of researchers in the field at various times, they used the number of unique authors who, 
according to the OpenAlex database, have published papers that touched on both computer vision and deep learning.

32  While converting between training efficiency and runtime efficiency isn’t trivial, we should expect runtime efficiency to 
grow at a relatively similar rate to training efficiency. When OpenAI performed their own analysis on image recognition 
efficiency improvements over a portion of the same timeframe, they found that training efficiency and runtime efficiency 
wound up growing at very similar rates – 15 month runtime efficiency doubling time vs 16 month training efficiency 
doubling time. (Footnote 9 also argued that for LLMs, runtime efficiency will tend to grow at a roughly similar rate to 
training efficiency.) If r is similar between runtime efficiency and training efficiency, then the r > 1 condition for training 
efficiency would still be sufficient for an SIE, as it would imply r > 1 for runtime efficiency as well.

We may also consider that improved training efficiency allows for training larger (and therefore “smarter”) models, 
with qualitative improvements. If it’s more impactful (for AI R&D) to train these larger models than it is to instead use 
the efficiency improvements to train cheaper models at the same capability level, then the r > 1 condition for training 
efficiency would be an even stronger indicator of conditions suitable for an SIE (though admittedly, still not a proof ). In 
this case, even if runtime efficiency grows somewhat slower than training efficiency, the qualitative leaps in AI capabilities 
enabled by larger models could more than make up for this difference in the context of an SIE.

Taking these points together, we think it is reasonable to consider the r > 1 condition for training efficiency as a rough 
indicator for a likely SIE. With that said, more research is warranted into the relationships between training efficiency, 
runtime efficiency, and the relative importance of each within the context of automated AI research.

https://arxiv.org/abs/2405.10494
https://openai.com/index/ai-and-efficiency/
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•	 Other areas analyzed by Epoch. Epoch has also performed similar analysis for a few 
other areas of algorithmic efficiency related to AI to varying degrees: computer chess, 
reinforcement learning training data efficiency, Boolean satisfiability problem solvers, and 
linear programming. For each of these areas, they obtained estimates of r, and their central 
estimate of r for each, respectively, was: 0.8, 1.6, 3.5, and 1.1. That said, each of these four 
results would be expected to hold less relevance for the cutting edge of AI than the image 
recognition results above.33

•	 Algorithms in general. When we looked at the speed of AI software progress above, we 
considered how algorithms writ large provide an outside perspective to check our AI-
specific results against, and we can do something similar here. While the analysis referenced 
in that section showed substantial differences in rates of efficiency improvements across 
different classes of algorithms, we can index on the median rate across all the examined 
algorithm classes. That analysis found the median rate of efficiency improvement to be 28% 
per year, when considering problems with large datasets.34

Estimating the amount of work performed on relevant software R&D over time is 
somewhat harder, though we can note that within the US, employment within computer 
programming jobs increased by ~12x from 1970 – 2014, while Bachelor’s and Master’s 
degrees in computer science increased by ~25x and ~20x over the same time period, 
respectively. These increases would all correspond to an average yearly growth rate of 
around 7%, give or take a percent or two. Since 28% is 4x as large as 7%, this would all imply 
r here was around 4, though the assumptions going into this estimate are questionable, and 
the result should therefore be taken with an especially large grain of salt.

•	 Sources of multiplicative software improvement. Improvements in training algorithms 
interact multiplicatively with post-training enhancements like fine-tuning and scaffolding. 
Similarly, improvements in training algorithms stack with methods that allow models to 
“think” more quickly (produce more tokens per second), such as quantization; if an AI system 
can do 1 month’s worth of thinking each day, that could significantly speed up the pace of 

33  The current main paradigm of AI is deep learning, which underpins the success of everything from LLMs to self-driving 
cars to image recognition systems. But Boolean satisfiability problem solvers and linear programming don’t typically rely 
on deep learning, and the particular computer chess algorithms that Epoch analyzed also don’t depend on deep learning. 
Epoch’s analysis of reinforcement learning, meanwhile, does relate to deep learning, but, crucially, this result didn’t look 
at improvements in computational efficiency (what we mean by “efficiency” in the rest of this piece) but instead at data 
efficiency. Data efficiency would be expected to be somewhat related to computational efficiency, but not identical to it. 
Further, similar to the image recognition analysis, Epoch’s analysis of reinforcement learning focused on the efficiency of 
training AI systems instead of running these systems, implying the same difficulties with drawing conclusions from image 
recognition results would also apply to the reinforcement learning results.

34  Specifically, problems where N = 1 billion.

https://arxiv.org/abs/2405.10494
https://ide.mit.edu/wp-content/uploads/2021/09/How_Fast_Do_Algorithms_Improve.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8509563
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subsequent software progress. When accounting for these additional factors that stack with 
training algorithms, our estimate of r should increase, perhaps by up to 2x.35

•	 Capability improvements. As we saw in previous sections, capability improvements are also 
a large contributor to AI progress, and they are not fully captured by the above analyses that 
focus on efficiency improvements. Therefore, the true value of r might be a fair bit larger 
than whatever we’d assume from efficiency alone, again plausibly by 2x.

 

Table 4: Summary of estimates of r from various domains related to AI. Note that post-training enhancement 
and capability advancements would further increase our estimate of r.

Considering both efficiency improvements and capability improvements together, as well as sources of 
multiplicative software improvement, we might currently expect that a single doubling in cumulative 
AI software R&D efforts would lead to a few doublings in AI software capacity (i.e., our best guess for 
r should perhaps be ~1-4, though with high uncertainty36). 

35  Notably, Anthropic, as part of a larger argument, recently made an “informal estimate” that post-training enhancements 
were responsible for improvement in LLMs equivalent to a 3x/year increase in the amount of computing power used 
to train cutting-edge systems. This estimate is similar to the rate they cited for algorithmic efficiency improvements in 
LLMs (2.8x/year). If these two rates of improvement are indeed similar, that would imply that we should double our 
value of r based on post-training enhancements.

36  Note that this uncertainty cuts both ways – while we should remain open to the possibility that r is substantially lower 
than our best-guess estimate, we should also remain open to the possibility that the true value is substantially higher.

https://assets.anthropic.com/m/24a47b00f10301cd/original/Anthropic-Responsible-Scaling-Policy-2024-10-15.pdf
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This result might sound incredible, but it would simply put software on footing not that different 
from hardware; in a previous report, Tom Davidson estimated r for hardware and found that 
historically it’s been ~7, while for AI chips (specifically, GPUs) from 2006 – 2022 it’s been ~5 (i.e. 
each time cumulative R&D spend doubled, the cost of computing power halved 5-7 times) – though 
these estimates might be somewhat overestimated.37 While computing hardware is famous for having 
grown very quickly over the previous several decades, what’s less well known is that software progress 
may have grown similarly quickly.

However, the current value of r is presumably unsustainable in the long run; we expect that there is 
some fundamental physical limit to AI capabilities achievable with a constant amount of hardware, and 
software progress would presumably slow as we approach this limit.

But there isn’t a good reason to expect this limit to be only slightly above the first ASARA 
systems, which may be imagined as approximately just substituting for human workers within 
relevant cognitive domains. Humans are presumably not the most intelligent lifeform possible, 
but simply the first lifeform on Earth intelligent enough to engage in activities like science and 
engineering. The human range for cognitive attributes is wide, and humans continue to gain from 

37  Specifically, r for hardware in that report is defined as the number of times price-performance of hardware (in terms of 
FLOP/$) doubles for each doubling in cumulative, inflation-adjusted semiconductor R&D spending. Analogously to 
software r, the purpose of hardware r is to measure how much more difficult it becomes to improve hardware as hardware 
improves.

The estimates mentioned in the text for hardware r (~7 and ~5) may be overestimates, as they assume the only factor 
influencing hardware price performance is explicit R&D spending. In reality, other factors have also been at play. 
Notably, price performance of hardware has additionally improved due to “learning by doing” (i.e., workers at 
semiconductor plants becoming better at their jobs) and economies of scale, and the estimates for hardware r will be 
inflated by instead attributing these improvements to semiconductor R&D.

Additionally, hardware has improved due to spillover effects from other scientific and technological progress outside 
of semiconductor R&D. However, this factor only adds uncertainty to r instead of inflating it, as we might consider the 
“true” value for r should depend on the total relevant research that advances hardware, regardless of whether the work 
is technically classified as “semiconductor R&D” or not. That is, if other relevant areas of research (leading to these 
spillover effects) grew in spending at similar rates as semiconductor R&D spending, then r would be unchanged; if they 
grew at faster rates, then the reported values of r would be inflated; and if they grew at slower rates, then the reported 
values of r would be deflated.

With all that said, we believe the reported estimates remain acceptable approximations. Semiconductor R&D and closely 
related research likely accounts for the majority of hardware improvement over recent decades. Additionally, it’s unlikely 
that other relevant research areas have grown substantially faster than semiconductor R&D, which has seen rapid growth. 
Thus, while the r estimates for hardware may be somewhat optimistic, they are likely not wildly inaccurate.

Note, however, that the comparison between software r and hardware r has another disanalogy – much of the increased 
spending on hardware R&D is spent on more expensive experiments instead of on more researcher labor, while the 
possibility of an SIE is dependent on automated researcher labor, specifically. (See the next section in this report, You 
might need fast growing computing power to discover better algorithms, for discussion of how we should adjust our 
expectations of an SIE in response to a related factor in software advancement.)

https://docs.google.com/document/d/1rw1pTbLi2brrEP0DcsZMAVhlKp6TKGKNUSFRkkdP_hs/edit#heading=h.3usbfhnb31p
https://intelligence.org/files/AlgorithmicProgress.pdf
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expanding population and specialization, as well as various cultural developments, indicating no 
fundamental limit in sight. In addition, ASARA will most likely be trained with orders of magnitude 
more computational power than estimates of how many “computations” the human brain uses 
over a human’s development into adulthood, suggesting there’s significant room for efficiency 
improvements in training ASARA systems to match human learning.38

So while r may currently be above 1, it will have to eventually fall – at the fundamental limits, it would 
need to be 0 (implying no further progress no matter how much effort is thrown at R&D), but it’s 
unclear how quickly r will fall over time as we approach these limits. The further away the limits are 
from ASARA, however, the more likely r is to still be above 1 at that time, and the greater chance we’ll 
have an SIE (which would then presumably continue until r dropped below 1, at which point progress 
would start slowing down). We may also note that the sooner we reach ASARA, the more likely it is 
that r will not have fallen to 1 by then, so the more likely we will have an SIE. Shorter timelines may 
therefore be thought of as increasing the chances of an SIE.

While the discussion so far does hint towards the plausibility of an SIE, it’s far from a proof, and it 
might turn out to be wrong in important ways. Perhaps most notably, holding hardware constant may 
significantly decrease r, for a very simple reason:

You might need fast growing computing power to 
discover better algorithms

The analyses for AI software progress conducted by groups like OpenAI and Epoch, discussed above, 
all occurred in a context of increasing computing power. Perhaps humans working on AI software 
R&D weren’t as responsible for software progress as we’re imagining, and instead the key enabler 
of this software progress was the increasing amount of hardware. After all, hardware can be used for 
running AI experiments (e.g., to find better algorithms), so more hardware would mean more and/or

38  Investigations into the computational power necessary to match the human brain tend to yield estimates of around 
10^15 FLOP/s. If we consider that the equivalent of “training” for a human brain is all the learning and brain processing 
that occurs from birth to productive adulthood, this would correspond to around 10^9 seconds (i.e., ~30 years * 3x10^7 
seconds/year). This would all imply that the computational operations corresponding to human “training” would 
be ~10^24 FLOP (from 10^15 FLOP/s * 10^9 s). Already, the most powerful AI systems today are being trained with 
close to 10^26 FLOP, and this figure is rising rapidly. Once we reach ASARA systems, their training costs will likely 
be substantially greater, implying many orders of magnitude more training computations than what’s equivalent for 
“training” the human brain, and thus many orders of magnitude improvement possible for training efficiency of ASARA 
systems just to match the efficiency of the human brain, assuming the estimates of the computational power for the 
human brain are not wildly off.

https://press.princeton.edu/books/ebook/9781400873296/the-secret-of-our-success-pdf
https://www.overcomingbias.com/p/why-does-hardware-grow-like-algorithmshtml
https://www.openphilanthropy.org/research/how-much-computational-power-does-it-take-to-match-the-human-brain/
https://ourworldindata.org/grapher/artificial-intelligence-training-computation
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larger AI experiments. Take away the continued expansion of computing power, and maybe most of 
the software gains also dry up.

Figure 11: Graph of the fastest supercomputer over time, from 2010, demonstrating the rise in computing 
power available. This increase in hardware may be largely responsible for improvements in AI software over 
this time period, as it would have enabled researchers to perform more AI experiments over time. If hardware 
were instead held constant, software progress might have also been slower. Note that this graph is a log plot (the 
y-axis grows exponentially), meaning the approximately straight line on this graph corresponds to exponential 
growth. (Figure source: Dongarra et al. (2023) – with minor processing by Our World in Data)

On the other hand, improvements in software efficiency should lead to a decrease in the computational 
costs of running each AI experiment, all else equal. If algorithmic improvements allow for training a 
GPT-3-sized AI system on a laptop, for instance, then every researcher with a laptop can run their 
own GPT-3-sized experiment. So it will be possible to run more experiments over time even with 
constant hardware, and this effect may be enough to sustain fast efficiency progress.39

39  Even if continued software progress requires more experiments to be done over time due to lower hanging fruit already 
being picked, for this objection to hold, the volume of these experiments would need to increase at a rate faster than 
the decline in computational cost per experiment. Though on the other hand, if we improve AI capabilities (as well as 
efficiency), and useful experiments require scaling up systems to exhibit improved capabilities, then this will reduce the 
number of experiments that can be run (e.g., if the cutting edge is a GPT-12-sized system, then experiments with GPT-
3-sized systems may not be particularly informative, and experiments may instead require something like training GPT-
10-sized systems).

https://ourworldindata.org/grapher/supercomputer-power-flops?time=2010..latest
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Additionally, if hardware limits do become more of a bottleneck to software progress, then AI 
companies could run smaller and cheaper experiments to compensate and extrapolate conclusions 
to larger systems. One reason to think it’ll be possible to extrapolate significantly from smaller 
experiments is that LLMs and other cutting-edge AI systems often involve very clear relationships 
between a) the amount of computing power used to train the system and b) the resultant performance 
of the system. This point was demonstrated by GPT-4; OpenAI found that certain properties of 
GPT-4 were highly predictable from experiments they previously ran with AI systems trained with 
<1/1,000th as much computing power as GPT-4. It’s conceivable that ASARA systems performing 
software R&D would similarly be able to generally infer the likely results of large AI experiments 
from running much smaller AI experiments, in which case they might tend to forgo the large  
experiments entirely. 

Abundant cognitive labor from ASARA systems may also dramatically improve the quality, 
efficiency, and information value of AI experiments through several paths, including: eliminating 
bugs and subtle experimental design flaws before running experiments, more heavily prioritizing 
the most promising avenues of research, designing more valuable experiments with better reasoning 
from first principles, analyzing the results of each experiment in depth, synthesizing the results of 
each experiment with all other experimental results and pieces of evidence, constantly monitoring 
experiments and terminating them as soon as important results are in, etcetera.

Additionally, AI software R&D could shift to avenues that rely less on large experiments to 
begin with. For instance, methods for fine-tuning, scaffolding, and prompting do not generally 
involve tons of computing power, and experiments in these sorts of methods may continue to yield  
substantial gains. 

It’s even possible that, in the context of a strong hardware limit and a quickly expanding pool 
of ASARA systems for AI R&D, the field of AI would shift away from machine learning (with 
its computationally expensive training processes) and towards a new paradigm relying less on 
experimentation, perhaps even one that disposes of training altogether and instead relies on explicit 
design of desired AI systems, reminiscent of GOFAI.40 While it’s unclear exactly how the field 
of AI would change, we might suspect smart ASARA systems would find effective ways around  
hardware bottlenecks.

40  This scenario would be antithetical to the trend in AI over the past several decades, in which, “General methods that 
leverage computation are ultimately the most effective, [especially compared to methods that leverage human knowledge 
or techniques that don’t scale well with computation].” But the reason for this historic trend has arguably been the 
exponentially increasing amount of computational power available (with increases in AI researcher labor being much 
smaller, relatively speaking). If instead we saw the situation flipped – computational power held constant with AI 
researcher capacity (from ASARA systems) fastly increasing – then we’d expect methods that leverage AI researcher 
labor to become increasingly competitive.

https://arxiv.org/abs/1712.00409
https://arxiv.org/abs/2001.08361
https://arxiv.org/abs/2010.14701
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2106.09488
https://arxiv.org/abs/2210.00849
https://cdn.openai.com/papers/gpt-4.pdf
https://arxiv.org/abs/2312.07413
https://en.wikipedia.org/wiki/GOFAI
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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On the other hand, even if limitations on experimentation from the fixed amount of hardware aren’t 
enough to stop software progress in its tracks, these limitations may still slow progress compared to 
the counterfactual. Consider the above workarounds that may allow for ASARA systems to still make 
substantial software progress despite hardware limits – implementing those workarounds may slow 
progress compared to if they weren’t needed, substantially decreasing r.41

It’s also possible that diminishing returns during an SIE will be generally steeper than in the historical 
data. Historically, computational resources were growing, so researchers could invent new algorithms 
that only work at new computational scales for which no one had previously tried to to develop 
algorithms. Researchers may have been plucking low-hanging fruit for each new scale of hardware. 
But this won’t be possible in an SIE, when the hardware stays fixed. Restricting to algorithms at a fixed 
computational scale might make the diminishing returns much steeper.

Regardless, the objection addressed in this section is still an open question. Interested researchers 
could investigate whether historic advances in AI software (e.g., development of the transformer 
architecture) were enabled by rapidly increasing hardware resources or not.

Accounting for the constant hardware, we might reduce our best-guess estimate of r to ~0.5-2, with 
the estimate lower if progress requires large experiments and higher if improvements like prompting 
and scaffolding can go a long way.

And there’s also another major reason that an SIE might be hindered, even if the value of r implies 
that it “should” occur:

Progress might become bottlenecked by the time 
required to train new AI systems

Under the current paradigm of AI, the most powerful systems are typically trained in two phases 
– a long “pretraining” phase and a much shorter “fine-tuning” phase. To simplify somewhat, the 
pretraining phase can be thought of as where the system primarily develops its capabilities, and the 
fine-tuning phase can be thought of as for modifying the system’s behavior in desired ways or honing 
specific capabilities. For instance, for LLMs, the pretraining phase could yield a system being able to 
imitate internet text (requiring traits such as fluency with grammatical structures, ability to do basic 
reasoning, internalizing various relationships between aspects of the world, and so on), and the fine-

41  A more sophisticated analysis could model the dynamics here as software progress being elastic with respect to both AI 
researcher capacity and computational power and try to estimate the extent of elasticity.

https://en.wikipedia.org/wiki/Elasticity_(economics)
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tuning phase could involve steering the system into acting according to a specific role (such as being a 
helpful and harmless question-answering system).

For the most powerful systems, the pretraining phase can be long indeed, requiring continuous use of 
large data centers for several months. Recent advancements in AI change the story somewhat, as they 
hint at the fine-tuning phase becoming both longer and more central for developing capabilities than 
has been the case traditionally (though fine-tuning currently remains far shorter than pretraining). 
Regardless, it’s precisely these long training phases – whether through pretraining, increasingly 
extensive fine-tuning, or other training phases that have yet to be developed – which might 
bottleneck AI progress, slowing down an SIE. If each generation of ASARA systems is able to create 
systems only so much more intelligent than themselves, and further, each subsequent generation 
needs to undergo a lengthy training process, then that could drastically dampen progress.

Figure 12: Diagram of post-ASARA, software-based feedback loop, modified to demonstrate how the time 
needed to train new AI models could bottleneck AI progress, potentially preventing an SIE.

But there are also several reasons that long training processes might not wind up bottlenecking 
progress. Progress might be able to be sustained by methods other than lengthy training processes – 
such as by focusing on scaffolding, prompting, and shorter fine-tuning phases. Additional methods 
might also be developed that allow for progress without retraining, such as by modifying parts of 
already existing systems in novel ways. And, as alluded to in the above section, a shift away from the 
current paradigm in AI might circumvent these hurdles even more clearly. If training new systems 

https://openai.com/index/learning-to-reason-with-llms/
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becomes a bottleneck on progress, that bottleneck would lead to large incentives for the field to search 
out other ways of sustaining improvement.

And even if training new systems from scratch remains necessary, it’s still plausible that an SIE 
could occur, as training new systems could become quicker than it is now. Specifically, algorithmic 
improvements could allow for greater efficiency in training new systems, thus requiring less time per 
each training run. For instance, if training runs for ASARA systems are initially two months, and then 
algorithmic improvements increase training efficiency by 30x, instead of plowing all of the efficiency 
improvements into training more powerful systems, these improvements could be split to train 
systems that are both more powerful and computationally less intensive (e.g., reducing the training 
time by 3x and having a further 10x improvement in efficiency to use for making the system larger). 
As long as each training run can be made somewhat faster than the last, training runs could eventually 
approach zero duration, and AI progress could become extremely fast.42 Therefore, the bottleneck 
from having to train new AI systems would likely delay an SIE rather than prevent it.43

It’s worth noting that the time necessary to train frontier AI systems isn’t an immutable property 
inherent to the current AI paradigm, but instead is a compromise between various competing 
dynamics – including the value to finishing training earlier, the price of computing power, the 
expected change in price of computing power over time, and so on. In an SIE, the balance would shift 
heavily in favor of finishing training earlier (progress would be going so fast that your system would 
likely become outdated quickly, implying you’d want to deploy it faster), which might simply lead to 
much shorter training runs.

42  Consider, if each training run takes k times as long as the previous training run, where k < 1 (implying each training run is 
faster than the previous training run by some proportional amount). In that case, completing m training runs would take 
an amount of time equal to the first training run times the sum Σ(k^n) from n = 0 to (m - 1). Since Σ(k^n) from n = 0 to ∞ 
converges for |k| < 1, an arbitrarily large amount of training runs could be accomplished in finite time, still allowing for 
an SIE. In order for an SIE to still be feasible, however, we must simultaneously have r > 1 and k < 1. In effect, you’d have 
to “spend” some of your software efficiency gains on making your training runs shorter, meaning software progress would 
accelerate less quickly than it would if you didn’t have to do this.

43  By prolonging the time between ASARA and an SIE, the delay would give society more time to prepare. We can estimate 
how long this delay may be, doing a little bit of math. Note that for |k| < 1, the sum Σ(k^n) from n = 0 to ∞ converges to 1/
(1 - k). If k = 0.9, then this sum would equal 10, implying that if the first training run after ASARA takes 2 months, then 
it would take 20 months to complete an arbitrary number of training runs. With k = 0.75, the sum would instead yield 4, 
implying 8 months for an arbitrary number of training runs (again, assuming the first training run takes 2 months). Tom 
Davidson also created a toy model which more directly calculates the time from ASARA until strongly superhuman AI, 
comparing scenarios where a) improved AI systems require further training (though where retraining doesn’t have to 
start over from scratch each time but could instead be continuous and cumulative) and b) where no training is necessary 
and AI R&D instead instantly leads to better AI systems. Based on this toy model and related analysis, Tom estimated 
that including the bottleneck related to training (as in scenario a) would lead to a ~1-3x increase in the time between the 
first ASARA systems and superhuman AI.

https://www.forethought.org/research/will-the-need-to-retrain-ai-models
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Again, this bottleneck is also an open question. Despite the possibilities above, it’s also possible all 
approaches for progress that don’t involve long training runs will either fail to pan out entirely or fail 
to sustain progress sufficiently, and maintaining r > 1 might preclude each subsequent training run 
getting shorter and shorter.

Bringing it all together

Given all the above, it seems at least decently likely that an SIE would occur if hardware were held 
constant upon the creation of ASARA and human social factors didn’t prevent it, though we can’t be 
confident either way.44 If an SIE does occur, it would very quickly lead to huge gains in AI capacity – 
soon after ASARA, progress might well have sped up to the point where AI software was doubling 
every few days or faster (compared to doubling every few months today).

Even if an SIE does not occur, and we instead get a “fizzle,” we could still see a period of AI software 
growing fast, perhaps about as fast as AI capacity is increasing now, considering not just software 
progress but also hardware progress and increases in spending on hardware. In other words, if we 
decided to completely pull the brakes on hardware increases once we reached ASARA and software 
progress is slow enough that it doesn’t “spiral out of control,” we might still expect to have a year 
or so of relative increases in AI capacity similar to today’s rate of progress, but occurring when AI 
systems are already powerful enough to automate AI R&D. Any plans for there being a pause in AI 
improvements around the time of ASARA should take this possibility into consideration.    

And considering that hardware will most likely not be held constant around ASARA, the chances 
of an intelligence explosion after ASARA should be even higher. Regardless, we should not be 
confident that hardware limitations mean AI progress will continue to be gradual and won’t  
become incredibly fast.

More research is warranted into both the likelihood of an SIE and how to govern it. In particular, 
further research into the likelihood of an SIE should try to approximately pin down r for AI software 
R&D, and further research into governing an SIE should consider governance mechanisms that could 
either prevent an SIE or otherwise ensure successful governance of AI would continue throughout an 
SIE. Additionally, those evaluating AI governance proposals and scaling policies should consider if 
these policies are robust to an SIE. 

44  If we had to quantify our forecast, we’d give a probability of somewhere between 30% and 60% of an SIE occurring under 
these conditions. We’re somewhat hesitant to state the probability we’d put on an SIE happening, since we don’t want 
readers to anchor too strongly on the exact probability we give.
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What can we do if an SIE is possible?

Even if it turns out that an SIE is the expected default outcome, that does not make it a foregone 
conclusion. The actions leading up to an SIE would all be human choices, and likewise, human 
choices could set up processes that either avert this outcome or send it down a positive course. 
Setting up the right processes may be very difficult and require a high level of coordination, but such  
coordination is possible.

The following are preliminary governance and policy ideas that might help either avoid an SIE or 
direct it in positive directions. Our point with listing these preliminary ideas isn’t to say that they 
should be taken as definitive solutions to an SIE, but instead simply to show that there are ways that 
we can act to start addressing the possibility, as well as to begin a conversation on the topic. We’ve 
recently seen leading AI companies take a few initial steps in these directions, for which we commend 
them.45 These sorts of policies could be more broadly adopted either voluntarily by AI companies or 
through government regulation:

•	 Ongoing measurement of software progress, disclosed to trusted 3rd parties. Much of the 
analysis above relies on work from OpenAI and Epoch involving measurement of software 
progress in vision recognition systems and other AI systems. Without these measurements, 
we would have a much harder time understanding what was going on with AI software 
progress. But our current understanding is still spotty.

Accurate measurement of software progress in frontier AI companies may give advanced 
warning about an impending SIE, potentially allowing society to take precautions before 
it’s too late. Further, any entity responsible for assessing if an AI company is behaving 
responsibly and implementing sufficient safeguards should know whether the company 
might soon face substantial acceleration in software progress, which is difficult to know if 
we’re not actively measuring progress.

•	 Pre-training and pre-deployment assessments of the potential to automate AI R&D. 
AI companies currently conduct evaluations on various safety and other attributes of 

45  A few recent developments stand out. First, Google DeepMind’s exploratory Frontier Safety Framework identifies 
machine learning R&D as a domain in which highly capable AI systems may pose severe risks, necessitating security 
and deployment mitigations once certain thresholds are reached. Second, OpenAI unveiled MLE-bench, a benchmark 
designed to assess AI systems’ capabilities in ML engineering tasks, and their accompanying paper acknowledges the 
risks of AI systems accelerating progress beyond humanity’s ability to ensure safe development. Third, Anthropic’s 
recent Responsible Scaling Policy update explicitly recognizes that systems with autonomous AI R&D capabilities 
would require heightened safeguards, and the updated policy identifies a specific threshold at which these heightened 
safeguards would be needed.

https://deepmind.google/discover/blog/introducing-the-frontier-safety-framework/
https://openai.com/index/mle-bench/
https://arxiv.org/pdf/2410.07095
https://www.anthropic.com/news/announcing-our-updated-responsible-scaling-policy
https://assets.anthropic.com/m/24a47b00f10301cd/original/Anthropic-Responsible-Scaling-Policy-2024-10-15.pdf
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their systems, such as the risks these systems pose to cybersecurity and biosecurity. These 
evaluations could be extended to include risks from accelerating AI progress due to new 
systems’ capabilities in AI R&D tasks.

Companies could evaluate whether AI systems can competently perform a set of AI R&D 
tasks autonomously (while outfitting the system with the best scaffolding and tools, to 
avoid underestimating the capabilities of the system). They could also supplement these 
evaluations with real-world data by carefully measuring, over time, the productivity gains 
that existing AI tools provide their employees and extrapolating these trends forward 
for more powerful systems.46 This would help inform assessments of how close we are to 
ASARA.

•	 Adopting a threshold level of substantial AI-led software acceleration, which companies 
commit to avoid exceeding without proper precautions.47 AI companies could 
intentionally avoid developing systems which would speed up AI software progress, across 
the entire field of research, beyond some threshold pace (e.g. 5x the recent pace of software 
progress), unless specific precautions were in place.

In order to get early warning signs that this threshold may be approaching, these companies 
could use proposals from the above bullet points. First, they could monitor the rate of 
software progress over time, to assess whether the rate of progress has increased to within 
some buffer of the threshold amount. Second, they could evaluate new systems’ ability to 
perform AI R&D tasks, to assess the risks that any specific system would cause a surprisingly 
large jump in AI R&D capabilities that plausibly would lead to the pace of progress 
exceeding the threshold rate. Third, they could extrapolate based on how much existing AI 
systems are boosting employee productivity. 

Before developing systems that pass the threshold rate, companies would commit to putting 
specific protective measures in place. These measures could include: 1) strong information 
security, robust to both hacking attempts from well-resourced state actors and potential 
attempts from (rapidly increasingly capable) AI models to self-exfiltrate; 2) alignment, 
boxing, and internal monitoring techniques that could preclude the possibility of 
misaligned AI from “poisoning” the process of subsequent AI development; and 3) publicly 
legible external oversight, requiring 3rd party sign-off on high-stakes decisions, including 
decisions surrounding rapid advancements in AI progress. See more discussion here.

46  These ideas are discussed further in this draft from Tom Davidson: How Can AI Labs Incorporate Risks From AI 
Accelerating AI Progress Into Their Responsible Scaling Policies?

47  This idea (as well as some of the specifics in the rest of this bullet point) is discussed further in this draft from 
Tom Davidson: How Can AI Labs Incorporate Risks From AI Accelerating AI Progress Into Their Responsible  
Scaling Policies?

https://carnegieendowment.org/research/2024/09/if-then-commitments-for-ai-risk-reduction?lang=en
https://aligned.substack.com/p/self-exfiltration
https://www.forethought.org/research/how-can-ai-labs-incorporate-risks-from-ai-accelerating-ai-progress-into
https://www.forethought.org/research/how-can-ai-labs-incorporate-risks-from-ai-accelerating-ai-progress-into
https://www.forethought.org/research/how-can-ai-labs-incorporate-risks-from-ai-accelerating-ai-progress-into
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•	 Other good governance practices. The possibility of an SIE raises the stakes of AI 
governance practices more generally, as the situation could start to spiral out of control 
quicker than otherwise assumed. By the time AI companies start to notice AI software 
progress accelerating, it may be too late to begin instituting needed practices for combatting 
the risks. The list of governance practices that may be helpful here is too numerous to 
enumerate, but they should include formal practices that promote good governance (e.g., 
whistleblower protection for workers at AI companies48), as well as a culture of taking 
safety concerns seriously (e.g., instead of viewing safety as simply a checkbox exercise or 
something done primarily for PR reasons).

We’ll likely find it easier to coordinate successfully on policies if all relevant actors have mutual 
assurance that none are developing superhuman AI too quickly (since fast development of 
superhuman AI would hint at the possibility of that actor pulling far ahead of the others on short 
notice). The governance proposals above would all help with this sort of assurance, in addition to 
the more direct benefits they offer. We’d therefore expect protective governance policies in this 
space to be somewhat self-reinforcing, as enacting these sorts of policies may make actors more 
comfortable coordinating further to enact further policies. In particular, mutual assurance around 
these issues would work best if such assurance can be accomplished via mechanisms that don’t rely 
on high levels of trust between parties and that are compatible with software progress being hard to  
observe externally. 

By the time we see clear signs that an SIE may be approaching, it might be too late to implement 
necessary changes. Unless we can rule out the possibility, we should be proactive and figure out how to 
navigate the terrain ahead of time.

48  As a general principle, whistleblower protections for those at AI companies may help uncover and disincentivize reckless 
behavior from those companies and may further ensure these companies follow other safety procedures.
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Appendix: Justification for our formulation of r

To reiterate, r is defined as for each time the cumulative amount of work performed on AI software R&D 
doubles, how many times does AI software capacity double. Our toy model is also constructed to be 
consistent with this general relationship.

We’re formulating the relationship between these factors in this manner – where each doubling in 
cumulative work leads to a set number of doublings in software capacity – due to some amount of 
both theoretical reasoning and indirect empirical evidence. This relationship has theoretical appeal – 
it captures the dynamics that: a) easier ideas will get discovered first, meaning ideas will get “harder 
to find” over time (and hence, consistent progress will require increased growth in cumulative work 
– e.g., a doubling in cumulative R&D); b) each idea will improve software by some proportional 
amount (e.g., a 2x efficiency improvement from a particular algorithmic advance), implying that a 
constant stream of ideas would cash out as exponential growth in software capacity (e.g., a 12-month 
doubling time); and c) there’s no reason to suspect these two rates of growth would be equivalent, 
so we can allow for a doubling in one to correspond to several doublings in the other. There is also 
further theoretical reasoning for expecting consistent progress to require cumulative work to grow 
more-or-less exponentially, specifically (like in our formulation), as opposed to following some 
other increasing function – if an area of work has many problems or directions which can be pursued 
independently (like R&D in a field), where the difficulty of solving each individual problem varies 
over orders of magnitude, then we’re likely to see work within the area yield logarithmic returns.

Empirically, many technologies exhibit a relationship whereby exponential increases in cumulative 
production correspond to exponential declines (at a different rate) in the cost per item, often referred 
to as experience curve effects. These experience curve effects are somewhat different than what we’re 
dealing with here, as they’re concerned not with exponential increases in cumulative R&D, but 
instead with exponential increases in cumulative volume of production, and the effect there is often 
thought to be driven primarily through worker and organizational “learning by doing” as opposed to 
via explicit R&D. That said, the underlying principle is likely similar – exponential increases in the 
cumulative “inputs” to technological improvement (whether R&D or hands-on practice) lead to 
exponential improvements in (at least the cost-efficiency of ) the technology. These experience curve 
effects show surprisingly large applicability, spanning industries such as aerospace, shipbuilding, 
construction operations, and so on (with different industries or technologies seeing different rates 
of cost declines). In some instances, the experience curve relationship holds smoothly for multiple 
decades and across several orders of magnitude in both cumulative production and in cost-efficiency, 
as it has for both transistors and solar panels – though for those two particular technologies, R&D 

http://www.fhi.ox.ac.uk/theory-of-log-returns/
https://en.wikipedia.org/wiki/Experience_curve_effects
https://ntrs.nasa.gov/api/citations/19760006882/downloads/19760006882.pdf
https://ieeexplore.ieee.org/document/6186749#fig3
https://ourworldindata.org/grapher/solar-pv-prices-vs-cumulative-capacity
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spending has increased exponentially over time as well, so they may provide even more direct 
evidence for the relationship we’re using.

The economy as a whole provides another data point supporting this general relationship. Long-term, 
per capita economic growth is thought to be driven primarily through technological advancement. 
And there has been relatively fast exponential growth in efforts to advance technology, stretching 
over many decades (e.g., long-term trends of exponential growth in R&D spending, in the number of 
STEM workers, in the number of scientific publications, etc). Per-capita GDP, meanwhile, has been 
growing at a slower exponential rate. So here we see exponential increases in R&D efforts yielding 
exponential increases in the outputs of those efforts, though at very different rates, consistent with 
what the theory would predict. Indeed, the semi-endogenous growth model, an economics model 
which bakes in similar assumptions to the above, is popular among economists and can explain why 
economic growth stayed roughly constant over the 20th century as the number of researchers grew 
exponentially (many alternative growth models struggle to explain this fact). The semi-endogenous 
growth model has been used to model the pace of progress in many particular technological areas, in 
Are Ideas Getting Harder to Find?

Finally, there’s somewhat more direct evidence for this sort of relationship applying to AI, 
specifically. As hinted at in above sections, AI systems in various domains have seen their efficiency 
grow approximately exponentially over time (e.g., for image recognition systems and LLMs), as the 
number of AI researchers and funding for AI research have also grown more-or-less exponentially in 
time, at different rates.

With all that said, it’s certainly possible that this formulation does not capture the main features of the 
dynamics. Most of the above reasoning and evidence is either speculative or indirect, and it’s plausible 
that this will all turn out to be an artifact, or that some other relationship would better capture the 
dynamics. We believe this formulation is substantially more plausible than major existing alternatives, 
and also that it’s likely good enough to work with, but it’s still one of the more plausible areas where 
mistaken assumptions could turn the analysis in this piece on its head. Further research into the 
relevant dynamics is warranted.
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